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Abstract

In parallel adaptive applications, the computational structure of the applications
changes over time, leading to load imbalances even though the initial load distribu-
tions were balanced. To restore balance and to keep communication volume low in
further iterations of the applications, dynamic load balancing (repartitioning) of the
changed computational structure is required. Repartitioning differs from static load
balancing (partitioning) due to the additional requirement of minimizing migration
cost to move data from an existing partition to a new partition. In this paper, we
present a novel repartitioning hypergraph model for dynamic load balancing that
accounts for both communication volume in the application and migration cost
to move data, in order to minimize the overall cost. Use of a hypergraph-based
model allows us to accurately model communication costs rather than approximat-
ing them with graph-based models. We show that the new model can be realized
using hypergraph partitioning with fixed vertices and describe our parallel multi-
level implementation within the Zoltan load-balancing toolkit. To the best of our
knowledge, this is the first implementation for dynamic load balancing based on
hypergraph partitioning. To demonstrate the effectiveness of our approach, we con-
ducted experiments on a Linux cluster with 1024 processors. The results show that,
in terms of reducing total cost, our new model compares favorably to the graph-
based dynamic load balancing approaches, and multilevel approaches improve the
repartitioning quality significantly.
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1 Introduction

An important component of many scientific computing applications is the
assignment of computational load onto a set of processors. The problem of
finding a task-to-processor mapping that minimizes the total execution time
is known as the mapping problem [5,6,10,12,13,15,25,46,47,52,53,57]. Although
efficient optimal solutions exist for certain restricted cases, such as chain- or
tree-structured programs [35], the general mapping problem is NP-hard [40]. In
this paper we consider the general problem where any task can potentially be
assigned to any processor. In the literature, a two-step approach is commonly
employed to solve the problem: first tasks are partitioned into load-balanced
clusters of tasks, then these clusters are mapped to processors [10,47]. In the
partitioning step, a common goal is to minimize the interprocessor commu-
nication while maintaining a computational load balance among processors.
Partitioning occurs at the start of a computation (static partitioning), but
often, reassignment of work is done during a computation (dynamic partition-
ing or repartitioning) as the work distribution changes over the course of the
computation. time. For instance, a computational mesh in an adaptive mesh
refinement simulation is updated between time steps. Therefore, after several
steps, even an initially balanced assignment of work to processors may suf-
fer serious imbalances. To maintain the balance in subsequent computation
steps, a repartitioning procedure that moves data among processors needs to
be applied periodically.

Repartitioning is a well-studied problem [19,20,24,27,32,33,42,43,50,51,55,53,58,61,62]
that has multiple objectives with complicated trade-offs among them:

(1) balanced load in the new data distribution;
(2) low communication cost within the application (as determined by the

new distribution);
(3) low data migration cost to move data from the old to the new distribution;

and
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(4) short repartitioning time.

Total application execution time is commonly modeled [39,50] as follows to
account for these objectives:

ttot = α(tcomp + tcomm) + tmig + trepart. (1)

Here, tcomp and tcomm denote the application’s computation and communica-
tion times, respectively, in a single iteration of the application; tmig is the data
migration time from existing to new partitions; and trepart is the repartition-
ing time. The parameter α indicates how many iterations (e.g., time steps
in a simulation) of the application are executed between each load-balance
operation.

The computation time tcomp of a parallel application is minimized when the
computational load is evenly distributed on the set of processors. Since achiev-
ing load balance is the main constraint on repartitioning algorithms, we can
safely assume that the computational load will be balanced; hence tcomp is
inherently minimized by the repartitioning algorithm. Furthermore, the time
required by state-of-the-art repartitioning programs to produce a new parti-
tioning is typically much smaller than αtcomp. As a result, tcomp and trepart

in (1) can be ignored; the cost function to be minimized by the repartitioning
algorithm reduces to

costtime = αtcomm + tmig (2)

Because time for communication depends on a number of architecture-specific
factors (e.g., network topology, message latency), general partitioning models
typically assume the time spent in communication is proportional to the “vol-
ume” of communication, i.e., the amount of data being sent [29]. Thus, the
cost function to be minimized by the repartitioning algorithm becomes

costvol = αbcomm + bmig (3)

where bcomm is the amount of data sent in each iteration of the application
and bmig is the amount of data sent during migration.

In this work, we present a repartitioning-hypergraph model that minimizes the
sum of total communication volume in the application and migration cost to
move data, as stated in (3). The repartitioning-hypergraph model is first in-
troduced in our preliminary work in [14]. Hypergraphs accurately model the
actual application communication cost and have greater applicability than
graphs (e.g., hypergraphs can represent non-symmetric and/or non-square sys-
tems) [16]. Therefore, the actual value of bcomm is considered in the proposed
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model, rather than its approximation as in the case of graph-based models [29].
Furthermore, in our repartitioning-hypergraph model, communication and mi-
gration costs are appropriately combined to allow reuse of existing hypergraph
partitioners for repartitioning. The new model can be realized effectively with
a hypergraph partitioning tool that provides hypergraph partitioning with
fixed vertices. Although serial hypergraph partitioners with this feature exist
([3,17]), to the best of our knowledge our implementation in Zoltan [7] is the
first parallel hypergraph partitioner that can handle fixed vertices.

The remainder of this paper is organized as follows. In Section 2, we discuss
previous work on dynamic load balancing. We present preliminaries for hy-
pergraph partitioning and multilevel partitioning in Section 3. The details
of the proposed repartitioning-hypergraph model are presented in Section 4.
Section 5 describes the parallel hypergraph-based repartitioning algorithm de-
veloped within the Zoltan [63] toolkit. Section 6 includes a detailed empirical
comparison of various graph- and hypergraph-based repartitioning approaches.
Finally, in Section 7, we give our conclusions and suggest future work.

2 Related Work

Dynamic load-balancing approaches can be classified into three main cate-
gories: scratch-remap, incremental and repartitioning. In scratch-remap meth-
ods, the computational model representing the modified structure of the appli-
cation is partitioned from scratch without accounting for existing part assign-
ments. Then, old and new partitions are remapped to minimize the migration
cost [51,42]. In incremental methods, existing part assignments are used as
initial assignments and incrementally improved by using a sub-optimal cost
function that minimizes either data migration cost (diffusive methods) or ap-
plication communication cost (refinement methods). In repartitioning meth-
ods, existing part assignments are taken into account to minimize both data
migration cost and application communication cost as stated in (3).

Another way of classifying dynamic load balancing methods is with respect
to the computational models they use. There are three computational mod-
els commonly used in the literature. These are coordinate-based, graph-based
and hypergraph-based models. Table 1 summarizes properties of dynamic load
balancing approaches in each category.

Some of the early dynamic load-balancing techniques are coordinate-based ap-
proaches such as Recursive Coordinate Bisection [4] and Space-Filling Curves [44,45,60].
These approaches can be applied either from scratch or incrementally. They
require geometric coordinates and do not model communication or migration
costs explicitly. Still, due to structure of the application data, they often work
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Coordinate Graph Hypergraph

Category Property Based Based Based

Migration cost high high high

Scratch-remap Communication cost high low low

Communication model none approximate accurate

Migration cost moderate low low

Incremental Communication cost high moderate moderate

Communication model none approximate accurate

Migration cost n/a low low

Repartitioning Communication cost n/a low low

Communication model none approximate accurate

Table 1
Classification of dynamic load-balancing approaches, with their relative migration
costs, application communication costs, and communication model.

reasonably well for mesh partitioning.

Diffusive methods have been one of the most studied incremental dynamic
load-balancing techniques in the literature [19,33,34,43,48,58,61]. In diffusive
load balancing, extra work on overloaded processors is distributed to neigh-
boring processors that have less than average loads. This strategy inherently
limits data migration cost. Some diffusive methods explicitly try to minimize
application communication cost using an approximation model (e.g., [48]);
however, since each minimization is done independently, these methods are
not equivalent to global minimization of total costs in (3).

Even though scratch-remap schemes achieve low communication volume, they
often result in high migration cost. On the other hand, incremental methods
result in low migration cost, but they may incur moderate to high communica-
tion volume. In dynamic load balancing, it is desirable that the repartitioning
algorithm is sensitive to the iteration parameter α, so that the relative weight
of communication cost to migration cost in (3) can be adjusted by the ap-
plication developer. Skewed Graph Partitioning introduced by Hendrickson et
al. [32] gives such a control to the application developer, by giving each vertex
a desire to stay in its current processor. Schloegel et al. [50] proposed a parallel
adaptive repartitioning scheme, where relative importance of migration time
against communication time is set by a user-provided parameter. Their work
is based on the multilevel graph partitioning paradigm, and this parameter is
taken into account in the refinement phase of the multilevel scheme. Aykanat
et al. [2] proposed a graph-based repartitioning model, called RM model, where
the original computational graph is augmented with new vertices and edges to
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account for migration cost. Then, repartitioning with fixed vertices is applied
to the graph using RM-METIS, a serial repartitioning tool that the authors
developed by modifying the graph partitioning tool METIS [36]. Although
the approaches of Hendrickson et al. [32], Schloegel et al. [50] and Aykanat et
al. [2] attempt to minimize both communication and migration costs, their ap-
plicability is limited to problems with symmetric, bi-directional dependencies.
A hypergraph-based model is proposed in a concurrent work of Cambazoglu
and Aykanat [11] for the adaptive screen partitioning problem in the context
of image-space-parallel direct volume rendering of unstructured grids. Despite
the fact that the limitations mentioned above for graph-based models do not
apply, their model accounts only for migration cost since communication oc-
curs merely for data replication (migration) in that problem.

3 Preliminaries

In this section, we present a brief description of hypergraph partitioning with
fixed vertices as well as the multilevel partitioning paradigm.

3.1 Hypergraph Partitioning with Fixed Vertices

Hypergraphs can be viewed as generalizations of graphs where an edge is not
restricted to connect only two vertices. Formally, a hypergraph H = (V, N) is
defined by a set of vertices V and a set of nets (hyperedges) N , where each
net nj ∈ N is a non-empty subset of vertices. A weight wi can be assigned to
each vertex vi ∈ V , and a cost cj can be assigned to each net nj ∈ N .

P = {V1, V2, . . . , Vk} is called a k-way partition of H if each part Vp, p =
1, 2, . . . , k, is a non-empty, pairwise-disjoint subset of V and ∪k

p=1Vp = V . A
partition is said to be balanced if

Wp ≤ Wavg(1 + ε) for p = 1, 2, . . . , k, (4)

where part weight Wp =
∑

vi∈Vp
wi and Wavg =

(∑
vi∈V wi

)
/k, and ε > 0 is a

predetermined maximum tolerable imbalance.

In a given partition P , a net that has at least one vertex in a part is considered
to be connected to that part. The connectivity λj of a net nj denotes the
number of parts connected by nj under the partition P of H. A net nj is said
to be cut if it connects more than one part (i.e., λj > 1).
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Let CutCost(H, P ) denote the cost associated with a partition P of hyper-
graph H. There are various ways to define CutCost(H, P ) [41]. The relevant
one for our context is known as connectivity-1 (or k-1) metric, defined as
follows:

CutCost(H, P ) =
∑

nj∈N

cj(λj − 1) (5)

We prefer this cost metric because it exactly corresponds to communication
volume in parallel computing for important operations like matrix-vector mul-
tiplication [16]. The standard hypergraph partitioning problem [41] can then
be stated as the task of dividing a hypergraph into k parts such that the
cost (5) is minimized while the balance criterion (4) is maintained.

Hypergraph partitioning with fixed vertices is a more constrained version of
the standard hypergraph partitioning problem. In this problem, in addition
to the input hypergraph H and the requested number of parts k, a fixed-part
function f(v) is also provided as an input to the problem. A vertex is said to
be free (denoted by f(v) = −1) if it is allowed to be in any part in the solution
P , and it is said to be fixed in part q (f(v) = q for 1 ≤ q ≤ k) if it is required
to be in Vq in the final solution P . If a significant portion of the vertices are
fixed, it is expected that the partitioning problem becomes easier. Clearly,
in the extreme case where all the vertices are fixed (i.e., f(v) 6= −1 for all
v ∈ V ), the solution is trivial. Empirical studies of Alpert et al. [1] verify that
the presence of fixed vertices can make a partitioning instance considerably
easier. However, to the best of our knowledge, there is no theoretical work
on the complexity of the problem. Experience shows that if only a very small
fraction of vertices are fixed, the problem is almost as “hard” as the standard
hypergraph partitioning problem.

3.2 Multilevel Partitioning Paradigm

Although graph and hypergraph partitioning are NP-hard [28,41], several al-
gorithms based on multilevel paradigms [9,31,37] have been shown to com-
pute high quality partitions in reasonable time. In addition to serial partition-
ers for graphs [30,36,56] and hypergraphs [17,38], the multilevel partitioning
paradigm has been adopted by parallel graph [56,39] and, quite recently, hy-
pergraph [22,54] partitioners as well.

Multilevel partitioning consists of three phases: coarsening, coarse partition-
ing and refinement. Instead of partitioning the original hypergraph directly, a
hierarchy of smaller hypergraphs that approximate the original one is gener-
ated during the coarsening phase. The smallest hypergraph obtained at the
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end of the coarsening phase is partitioned in the coarse partitioning phase.
Finally, in the refinement phase, the coarse partition is projected back to the
larger hypergraphs in the hierarchy and improved using a local optimization
method. The same procedure applies to graphs as well.

In Section 5, we describe a technique for parallel multilevel hypergraph par-
titioning with fixed vertices [14]. The implementation is based on the parallel
hypergraph partitioner in Zoltan [22].

4 Repartitioning Hypergraph Model

In this section, we present our novel hypergraph model and explain how it
accounts for the trade-off between communication and migration costs due to
different values of α. By representing these costs appropriately in a reparti-
tioning hypergraph, the proposed approach allows use of existing hypergraph
partitioning tools to optimize the composite objective defined in (3).

We call the period between two subsequent load-balancing operations an epoch
of the application. An epoch consists of one or more computation iterations
and the computational structure and dependencies of an epoch can be accu-
rately modeled with a computational hypergraph [16]. Even though computa-
tions in the application are of the same type, a different hypergraph is needed
to represent each epoch due to changes in the structure of the hypergraph
across epochs. We denote the hypergraph that models the jth epoch of the
application by Hj = (V j, N j) and the number of computation iterations in
that epoch by αj.

Load balancing for the first epoch is achieved by partitioning H1 using a
static partitioner. For the remaining epochs, data redistribution cost between
the previous and current epochs should also be included during load balancing.
Therefore, the actual cost (3) is the sum of the communication cost bcomm for
Hj with the new data distribution, scaled by αj, and the migration cost bmig

for moving data between the distributions in epoch j − 1 and j.

Our new repartitioning hypergraph model appropriately captures both appli-
cation communication and data migration costs associated with an epoch. To
model migration costs in epoch j, we construct a repartitioning hypergraph
H̄j = (V̄ j, N̄ j) by augmenting Hj with k new vertices corresponding to each
of the k parts, and |V j| new hyperedges using the following procedure:

• Scale each net’s cost (representing application communication) in N j by αj

while keeping the vertex weights intact.
• Add a new part vertex ui with zero weight for each part i, and fix those
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vertices in respective parts; i.e., f(ui) = i for i = 1, 2, . . . , k. Hence V̄ j

becomes V j ∪ {ui|i = 1, 2, . . . , k}.
• For each vertex v ∈ V j, add a migration net nv between v and ui if v is

assigned to part i at the beginning of epoch j. Set the migration net’s cost cv

to the size of the data associated with v, since this migration net represents
the cost of moving vertex v to a different part.

Once the new repartitioning hypergraph H̄j that encodes both communica-
tion and migration costs is constructed, the repartitioning problem reduces to
hypergraph partitioning with fixed vertices using connectivity-1 metric (5).

Let P̄ = {V̄1, V̄2, . . . , V̄k} be a valid partition of H̄j. Since fixed part vertices
have zero weights, part weights are equal to the sum of the computational
vertices’ weights. Therefore, maintaining the balance criterion (4) in this par-
tition corresponds to having a balanced computation in epoch j. Minimizing
the connectivity-1 cost metric (5) exactly corresponds to minimizing the repar-
titioning cost costvol in (3). That is, for epoch j,

costvol = CutCost(H̄j, P̄ j). (6)

Since we obtained H̄j by augmenting Hj we can further expand this formula
as

costvol = αjCutCost(Hj, P j) +
∑

nv∈(N̄j−Nj)

cv(λv − 1), (7)

where P j = {V1, V2, . . . , Vk} is the same as P̄ j except it does not contain part
vertices. In (7), the first term, αjCutCost(Hj, P j), corresponds to the amount
of data sent in each iteration of the application [16] (i.e., bcomm in (3)) and the
second term corresponds to the amount of data sent during migration (i.e.,
bmig in (3)).

Assume that a vertex v is assigned to part p in epoch j − 1 and part q in
epoch j, where p 6= q. Then, the migration net nv between v and up that
represents the migration cost of vertex v’s data is cut with connectivity of
λv = 2 (note that up is fixed in part p). Therefore, the cost of moving vertex
v from part p to q, cv, is appropriately included in the total cost. If a net
that represents communication during the computation phase is cut, the cost
incurred by communicating the associated data in all αj iterations in epoch j is
also accounted for since the net’s weight has already been scaled by αj. Hence,
our repartitioning hypergraph accurately models the sum of communication
during computation phase and migration cost due to moved data.

Figure 1(a) illustrates a sample computational hypergraph Hj at the begin-
ning of epoch j. The corresponding repartitioning hypergraph H̄j is displayed
in Figure 1(b). A nice feature of our model is that no distinction is required
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Fig. 1. (a): A sample computational hypergraph representation at the beginning
of epoch j. Nets are depicted as squares and vertices are depicted as circles. The
numbers inside the circles are the computational loads of each vertex. (b): Reparti-
tioning hypergraph for epoch j; for simplicity in the presentation, migration nets are
depicted as diamonds and part vertices are depicted as octagons. (c) and (d): Two
sample solutions with bcomm = 4, bmig = 2, and bcomm = 3, bmig = 4, respectively,
under the assumption that the migration cost of each computation vertex and the
application communication cost per net are one (i.e., each net’s cost is one).

between communication and migration nets as well as computation and part
vertices. However, for clarity in this figure, we represent computation vertices
with circles and part vertices with octagons. Similarly, application communi-
cation nets are represented with squares, and migration nets are represented
with diamonds. In this example, at the beginning of epoch j, there are twelve
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computation vertices with various computational loads (represented by the
numbers inside the circles). Computational load is initially in three highly im-
balanced parts. Three cut nets represent data that need to be communicated
among the parts. Two of these nets have connectivity λ = 3 and one has
λ = 2. Assuming unit cost for each net, total communication cost (5) is five.
In other words, if the application chooses to continue with this partitioning,
each iteration of epoch j incurs a communication cost of five units.

In Figure 1(b), to construct the repartitioning hypergraph H̄j from Hj, three
part vertices u1, u2 and u3 are added and net weights in Hj are scaled by αj.
Then, each of the twelve computation vertices is connected via a migration net
to the part vertex associated with the part to which the computation vertex
was assigned at the beginning of epoch j.

Two balanced sample solutions for the repartitioning problem are depicted
in Figures 1(c) and 1(d). Assume that the sizes of the data associated with
each computation vertex and application communication net are the same; i.e.,
communication and migration nets have unit costs. In Figure 1(c), two vertices
with weights three and six are migrated from part 1 to part 2, resulting in
migration cost of two and communication cost of four units at each iteration,
due to four cut nets with connectivity two. In Figure 1(d), while two vertices
with weights three and six are migrated from part 1 to part 3, two vertices of
part 3 are migrated to part 2. This distribution results in migration cost of four
and communication cost of three units at each iteration. These two solutions
present an example of the trade-off between communication and migration
costs in the repartitioning problem. Assume that epoch j consists of only one
iteration (αj = 1). Then the solution presented in Figure 1(c) is better than
the solution presented in Figure 1(d), because the former has a total cost of
six, whereas the latter has a total cost of seven. However, if epoch j consists
of ten iterations (αj = 10), the solution presented in Figure 1(d) is better
because it has a total cost of 34, whereas Figure 1(c) has a total cost of 42.
With the user-specified αj parameter, our repartitioning hypergraph model
accurately accounts for this trade-off.

5 Parallel Repartitioning Tool

The dynamic repartitioning model presented in the previous section can be
implemented using parallel hypergraph partitioning with fixed vertices. In
such an implementation, the multilevel algorithms commonly used for hyper-
graph partitioning (as described in Section 3) are adapted to handle fixed
vertices [3,17]. In each phase of the multilevel partitioning, the fixed part con-
straints defined by f(v) must be maintained for each vertex v and its resulting
coarse vertices. In this section, we describe our approach for parallel multilevel
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hypergraph partitioning with fixed vertices [14] using the parallel hypergraph
partitioner in Zoltan [22]. We first assume that we partition directly into k
parts, and later discuss how fixed vertices are handled when recursive bisection
is used to obtain k parts.

5.1 Coarsening Phase

In the coarsening phase of the multilevel algorithms, we approximate the orig-
inal hypergraph with a succession of smaller hypergraphs with similar con-
nectivity and equal total vertex and edge weight. Coarsening ends when the
coarsest hypergraph is “small enough” (e.g., it has fewer than 2k vertices)
or when the last coarsening step fails to reduce the hypergraph’s size by a
specified amount (typically 10%). To reduce the hypergraph’s size, we merge
similar vertices, i.e., vertices whose hyperedge connectivity overlaps signifi-
cantly. In this paper, we use an agglomerative matching technique that has
been called as heavy-connectivity clustering in PaToH [17,16].

Parallel matching is performed in rounds. In each round, each processor broad-
casts a subset of candidate vertices that will be matched in that round. Then,
all processors concurrently compute their best match for those candidates and
the global best match for each candidate is selected. In agglomerative match-
ing, candidate vertices are allowed to join already matched vertices to form a
larger cluster as long as the final cluster’s size is not larger than a quarter of
a target part size.

For fixed-vertex partitioning, we constrain matching to propagate fixed-vertex
constraints to coarser hypergraphs so that coarser hypergraphs truly approxi-
mate the finer hypergraphs and their constraints. We do not allow vertices to
match if they are fixed to different parts. Thus, there are three scenarios in
which two vertices match: 1) both vertices are fixed to the same part, 2) only
one of the vertices is fixed to a part, or 3) both are not fixed to any parts (i.e.,
both are free vertices). In cases 1 and 2, the resulting coarse vertex is fixed
to the part in which either of its constituent vertices was fixed. In case 3, the
resulting coarse vertex remains free.

5.2 Coarse Partitioning Phase

In the coarse partitioning phase, we construct an initial partition of the coars-
est hypergraph available. If the coarsest hypergraph is small enough, we repli-
cate it on every processor. Each processor then runs a randomized greedy
hypergraph growing algorithm to compute a different partition into k parts,
and the partition with the lowest cost is selected. If the coarsest hypergraph is
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not small enough, each processor contributes to computation of an initial par-
tition using a localized version of the greedy hypergraph algorithm. In either
case, we maintain the fixed part constraints by assigning fixed coarse vertices
to their respective parts.

5.3 Refinement Phase

In the refinement phase, we project our coarse partition to finer hypergraphs
and improve it using a local optimization method. Our code is based on a
localized version of the successful Fiduccia–Mattheyses [26] method, as de-
scribed in [22]. The algorithm performs multiple pass-pairs and in each pass,
each free vertex is considered to move to another part to reduce the cut metric.
We enforce the fixed vertex constraints simply; we do not allow fixed vertices
to be moved out of their fixed part.

5.4 Handling Fixed Vertices in Recursive Bisection

Zoltan uses recursive bisection (repeated subdivision of parts into two parts) to
obtain a k-way partition. This recursive bisection approach can be extended
easily to accommodate fixed vertices. For example, in the first bisection of
recursive bisection, the fixed vertex information of each vertex can be updated
so that vertices that are originally fixed to parts 1 ≤ p ≤ k/2 are fixed to part
1, and vertices originally fixed to parts k/2 < p ≤ k are fixed to part 2. Then,
the multilevel partitioning algorithm with fixed vertices described above can
be executed without any modifications. This scheme is applied recursively in
each bisection.

6 Experimental Results

In this section we present detailed comparisons of various graph- and hypergraph-
based repartitioning approaches using dynamic datasets that are synthetically
generated using real application base cases, as well as real dynamic data from
applications in data mining and adaptive mesh refinement simulations. For
most experiments, we select square, structurally symmetric data to allow com-
parisons between graph and hypergraph methods; the data mining application,
however, demonstrates the greater applicability of hypergraph methods to
non-symmetric, rectangular data — in this case, term-by-document matrices.
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6.1 Repartitioning Approaches

We consider three aspects of repartitioning methods and compare different
options provided by various algorithms as well as the algorithms themselves.

• Repartitioning technique: Following the discussion in Section 2, we classify
repartitioning techniques into three categories: scratch-remap, incremental
and repartitioning. Repartitioning approaches have been shown to outper-
form diffusive methods in [50]; therefore, we consider only refinement ap-
proaches within the incremental techniques category.

• Cost model: Hypergraph models accurately represent communication and
migration costs for multi-way interactions, while graph models represent
approximate costs. We do not consider coordinate-based models here, since
they are not general (e.g., they cannot be applied to data without coordi-
nates) and they do not model communication and migration costs explicitly.

• Optimization method: We also make a distinction between single-level versus
multi-level partitioners and compare their performance.

Repartitioning Cost Optimization

Partitioner technique model method Software

Z-repart repartitioning hypergraph multilevel Zoltan

Z-SL-repart repartitioning hypergraph single level Zoltan

Z-scratch scratch-remap hypergraph multilevel Zoltan

Z-SL-refine iterative hypergraph single level Zoltan

M-repart repartitioning graph multilevel ParMETIS

M-scratch scratch-remap graph multilevel ParMETIS

Table 2
Properties of the partitioners used in the experimental evaluation.

We compare six different partitioners given in Table 2 that collectively cover
all options with respect to each of the three aspects considered. In our exper-
iments, we use ParMETIS version 3.1 [39] for graph partitioning and Zoltan
version 3.0 [7,14,22] for hypergraph partitioning. For the scratch methods,
we used a maximal matching heuristic in Zoltan to map part numbers be-
tween old and new partitions to reduce migration cost. We do not expect the
partitioning-from-scratch methods to be competitive for dynamic problems,
but include them as a useful baseline.
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6.2 Dynamically Perturbed Data Experiments

To perform experiments on large numbers of processors, we collected static
data from three real applications and dynamically perturbed the data over a
series of time-steps. The properties of the application datasets are shown in
Table 3. These datasets provide a range of sparsity and regularity representa-
tive of different applications.

Two different methods are used to dynamically perturb the data in the exper-
iments. The first method introduces biased random perturbations that change
the structure of the data. In this method, a certain fraction of vertices in
the original data is randomly deleted along with the incident edges. At each
repartitioning iteration, this operation is repeated independently from previ-
ous iterations; hence, a different subset of vertices from the original data is
deleted. This operation simulates dynamically changing data that can both
lose and gain vertices and edges. The results presented in this section corre-
spond to the case where half of the parts lose or gain 25% of the total number
of vertices at each iteration. We tested several other configurations by vary-
ing the fraction of vertices lost or gained. The results we obtained in these
experiments were similar to the ones presented in this section.

The second method simulates adaptive mesh refinement. Starting with the ini-
tial data, a certain fraction of the parts at each iteration is randomly selected.
Then, the sub-domain corresponding to the selected parts performs a simu-
lated mesh refinement, where the weight and size of each vertex are increased
by a constant factor. In the experiments in this section, 10% of the parts are
selected at each iteration and the weight and size of each vertex in these parts
are randomly increased to between 1.5 and 7.5 of their original value. Similar
to the previous method, we tested several other configurations by varying the
factor that scales the size and weight of vertices. The results obtained in these
experiments were similar to the ones presented here.

We performed the dynamically perturbed data experiments on Sandia’s Thun-
derbird cluster. Each node of Thunderbird has dual 3.6GHz Intel EM64T pro-
cessors with 6GB of RAM. The nodes are interconnected with an Infiniband
network. We use Intel v10.0 compilers with -O0 optimization flag and Open-
MPI v1.2.4. All experiments were run on 64, 256, and 1024 processors.

(Note to Reviewers: Several ParMETIS experiments failed on Thunderbird
under this configuration. We suspect the problem lies not in ParMETIS but in
Thunderbird’s compiler/configuration. Before final publication, we will work
with the Thunderbird system administrators to obtain the missing ParMETIS
results.)

In Figures 2 through 7, the parameter α, the number of iterations in an epoch,
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Table 3
Properties of the test datasets; |V | and |E| are the numbers of vertices and graph
edges, respectively.

Name |V | |E| vertex degree Application Area

min max avg

xyce680s 682,712 823,232 1 209 2.4 VLSI design

slac6M 5,955,366 11,766,788 2 4 4.0 Finite element mesh

cage15 5,154,859 47,022,346 2 46 18.2 DNA electrophoresis

is varied from 10 to 1000, and total cost (3) is reported for 64, 256 and 1024
processors (parts). Each result is averaged over a sequence of 20 trials for each
experiment. For each configuration, there are six bars representing total cost
for Z-repart, Z-SL-repart, Z-scratch, Z-SL-refine, M-repart, and M-scratch,
from left to right respectively. The total cost in each bar is normalized by
the total cost of Z-repart in the respective configuration and consists of two
components: application communication costs (scaled by α) on the bottom
(darker shade) and migration costs on the top (lighter shade). Results are
shown for both the dynamic structure perturbations and the dynamic weight
perturbations.

The results indicate that our new hypergraph repartitioning method Z-repart
performs better than M-repart in terms of minimizing the total cost in the
majority of the test cases. This can be explained by the fact that the migration
cost minimization objective is completely integrated into the multilevel scheme
rather than handled in only the refinement phase. Therefore, Z-repart provides
a more accurate trade-off between communication and migration costs than
M-repart to minimize the total cost. This is more clearly seen for small and
moderate α values where these two costs are comparable. On the other hand,
for large α values, the migration cost is less important relative to communi-
cation cost, and the problem essentially reduces to minimizing the commu-
nication cost alone. Therefore, in such cases, Z-repart and M-repart behave
similarly to partitioners using scratch methods.

Similar arguments hold when comparing Z-repart against scratch-remap repar-
titioning methods. Since minimization of migration cost is ignored in Z-scratch
and M-scratch, migration cost gets extremely large and dominates the total
cost as α gets smaller. Total cost with Z-scratch and M-scratch is comparable
to Z-repart only when α is greater than 100, where communication cost starts
to dominate. Z-repart still performs as well as the scratch methods in this
range to minimize the total cost.

As the number of parts (processors) increases, there is a noticeable increase
in migration cost relative to communication cost when using M-repart. On
the other hand, with Z-repart the increase in migration cost is smaller at the
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expense of a modest increase in communication cost. This shows that Z-repart
achieves a better balance between communication and migration costs, and
consequently results in a smaller total cost than M-repart with increasing
number of parts. This suggests that in addition to minimization of the total
cost, Z-repart is superior to M-repart in terms of scalability of the solution
quality.

Z-refine and Z-SL-repart attempt to minimize communication volume with
relatively fewer vertex movements due to the constrained initial partition.
Therefore, the communication cost of these methods is higher than other par-
titioners, resulting in a relatively higher total cost for large α values. On the
other hand, both methods produce lower migration costs compared to scratch
methods for small α values. Both Z-refine and Z-SL-repart, however, are out-
performed by Z-repart in all of our test cases. Indeed, the benefit of multi-level
methods is clearly shown in the comparisons of Z-repart and Z-SL-repart.

Run times of the tested partitioners normalized by that of Z-repart for the
perturbed structure and weight experiments are given in Figures 8–13. We ob-
served two different run time profiles in our test cases. The first one is shown in
Figures 8 and 9 for the xyce680s dataset, where multilevel hypergraph-based
methods Z-repart and Z-scratch are at least as fast as their graph-based coun-
terparts M-repart and M-scratch. In some cases (e.g. perturbed data structure,
running on 64 processors) hypergraph-based approaches are up to five times
faster than graph-based approaches. Z-SL-repart is significantly faster than
most other methods in this dataset with relatively low total cost; therefore, it
becomes a viable option for applications that require a very fast repartitioner
for small α values. The second run time profile is observed in Figures 10-13
for the slac6M and cage15 datasets. The results show that hypergraph-based
repartitioning can be up ten times slower than graph-based approaches. As
these results show, there is no clear conclusion on which approach is faster.
Furthermore, since the application run time is often far greater than the par-
titioning time, this enhancement may not be important in practice.

6.3 Adaptive Mesh Refinement Experiments

Adaptive mesh refinement is a decades-old technique used in finite element
analysis to obtain desired solution resolution with an optimal number of de-
grees of freedom. At each time step, the finite element code computes both
the solution and an estimate of the error in the solution. Elements in regions
with high error are subdivided into many smaller elements, while elements
in regions with low error are coalesced into fewer large elements. Subsequent
solves, then, obtain greater resolution in the high-error regions without adding
unnecessary degrees of freedom in low-error regions.
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Fig. 2. Normalized total cost for xyce680s with perturbed data structure with
α = 10, 100, 1000 on 64, 256, and 1024 processors; colors indicate which reparti-
tioning method was used.
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Fig. 3. Normalized total cost for xyce680s with perturbed weights with
α = 10, 100, 1000 on 64, 256, and 1024 processors; colors indicate which reparti-
tioning method was used.
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Fig. 4. Normalized total cost for slac6M with perturbed data structure with
α = 10, 100, 1000 on 64, 256, and 1024 processors; colors indicate which repartition-
ing method was used. Z-SL-repart and Z-SL-refine bars are truncated to enhance
readability.
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Fig. 5. Normalized total cost for slac6M with perturbed weights with
α = 10, 100, 1000 on 64, 256, and 1024 processors; colors indicate which repartition-
ing method was used. Z-SL-repart and Z-SL-refine bars are truncated to enhance
readability.
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Fig. 6. Normalized total cost for cage15 with perturbed data structure with
α = 10, 100, 1000 on 64, 256, and 1024 processors; colors indicate which reparti-
tioning method was used.
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Fig. 7. Normalized total cost for cage15 with perturbed weights with
α = 10, 100, 1000 on 64, 256, and 1024 processors; colors indicate which reparti-
tioning method was used.

19



10 100 1000 10 100 1000 10 100 1000
0

1

2

3

4

5

64 processors                                 256 processors                             1024 processors

N
o

rm
al

iz
ed

 r
u

n
 t

im
e

 

 

Z−repart
Z−SL−repart
Z−scratch
Z−SL−refine
M−repart
M−scratch

Fig. 8. Normalized run time with perturbed data structure for xyce680s with
α = 10, 100, 1000 on 64, 256, and 1024 processors; colors indicate which reparti-
tioning method was used.
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Fig. 9. Normalized run time with perturbed weights for xyce680s with
α = 10, 100, 1000 on 64, 256, and 1024 processors; colors indicate which reparti-
tioning method was used.
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Fig. 10. Normalized run time with perturbed data structure for slac6M with
α = 10, 100, 1000 on 64, 256, and 1024 processors; colors indicate which reparti-
tioning method was used.
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Fig. 11. Normalized run time with perturbed weights for slac6M with
α = 10, 100, 1000 on 64, 256, and 1024 processors; colors indicate which reparti-
tioning method was used.
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Fig. 12. Normalized run time with perturbed data structure for cage15 with
α = 10, 100, 1000 on 64, 256, and 1024 processors; colors indicate which reparti-
tioning method was used.
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Fig. 13. Normalized run time with perturbed weights for cage15 with
α = 10, 100, 1000 on 64, 256, and 1024 processors; colors indicate which reparti-
tioning method was used.
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(a) (b) (c)

Fig. 14. Hexahedral finite element meshes with adaptive mesh refinement at
time-steps 0, 54, and 108, respectively.

In parallel simulations with adaptive mesh refinement, the refinement and
coalescing of elements causes significant load imbalance. As processors add
or remove elements due to refinement, their workloads change. Dynamic load
balancing has played an important role in enabling parallel adaptive mesh
refinement simulations, redistributing work to accommodate evolving meshes;
see, e.g., [4,18,44,23,27,59,49,42]. Coordinate- and graph-based methods have
been used with great success, due to mesh data’s relatively regular structure
and low vertex degrees. In these experiments, we compare our repartitioning
hypergraph model to commonly used graph-based repartitioners.

Our adaptive mesh data is a series of 109 hexahedral meshes from the ALE-
GRA shock physics explicit finite element code [8]. The series of meshes rep-
resents time-steps of the simulation; the mesh refinement tracks the shock
moving across the domain and its reflections. (Figure 14 shows the mesh at
the time-steps 0, 54, and 108, respectively.) The smallest mesh (time-step
0) has 132,209 nodes and 103,100 elements; the largest (time-step 108) has
1,380,266 nodes and 1,247,000 elements.

We represent mesh nodes with vertices of the graph and hypergraph models,
and create a graph edge between nodes that share a mesh element. These
graph edges are used directly in the graph methods, and combined into a
single hyperedge per node in the hypergraph methods. The smallest mesh has
1,527,841 graph edges; the largest has 17,391,840 graph edges.

In our experiments, we performed an initial partitioning of the initial mesh
(time-step 0). Then at each time-step T > 0, we assign each node of mesh T
to the same part as its closest node in mesh T − 1 — “closeness” is measured
by two nodes’ proximity along a space-filling curve through the nodes of both
meshes — and repartition mesh T using one of the methods in Table 2.

We ran experiments over 109 meshes with α = 100 on 16, 32, and 64 processors
of Sandia’s Odin cluster. Each node of Odin has two AMD Opteron 2.2GHz
processors and 4 GB of RAM. Nodes are connected with a Myrinet network.
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Fig. 15. Normalized total cost for adaptive mesh refinement experiments with
α = 100 on 16, 32 and 64 processors; colors indicate which repartitioning method
was used.
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Fig. 16. Normalized run time for adaptive mesh refinement experiments with
α = 100 on 16, 32, and 64 processors; colors indicate which repartitioning method
was used.

We used MPICH v1.2.7 and gcc v3.4.3.

Total cost (3) and run times for each method are shown in Figures 15 and 16,
respectively. The repartitioning hypergraph method Z-repart produced lower
total cost than all other methods, although the graph repartitioning method
M-repart was competitive on small numbers of processors. The performance
gap between hypergraph and graph methods increases in favor of hypergraph
model with increasing number of processors. Execution time for Z-repart was
greater than M-repart, indicating the need for faster heuristics in the hyper-
graph implementation for applications with relatively low and homogeneous
connectivity.
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Fig. 17. Normalized total cost for term-by-document with α = 100 on 16, 32 and
64 processors; colors indicate which repartitioning method was used.
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Fig. 18. Normalized run time for term-by-document with α = 100 on 16, 32, and 64
processors; colors indicate which repartitioning method was used.

6.4 Term-by-Document Experiments

Our last example is from text analysis and retrieval. Latent Semantic Analysis
(LSA) [21] is a popular technique for analysis of large document collections.
Given a set of documents, a user can search for specific terms, documents rel-
evant to a specific topic, or find related documents. The method is based on
reduced approximations to the term-by-document matrix, where rows repre-
sent terms and columns correspond to documents. There is a nonzero matrix
entry in position (i, j) if and only if document j contains term i. Note that such
matrices are rectangular and non-symmetric, so graph models do not apply.
The computationally intensive part of LSA is to compute a truncated singular
value decomposition (SVD) of the type A ≈ Ak = UkΣkVk, where Σk is diago-
nal, and k is the rank of the approximation. It is known that 100 ≤ k ≤ 300 is
a good range for retrieval. An iterative method based on sparse matrix-vector
multiplication by A is used to compute the SVD.
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We focus on a parallel strategy for LSA with a dynamic document collection
where documents are added over time. (This is motivated by a project at San-
dia led by Danny Dunlavy using the LSALIB software.) Our goal is to find
an efficient parallel distribution of documents to processors, to ensure load
balance and reduce communication. As an example, we use a large term-by-
document matrix corresponding to the Citeseer database up to 2004. Each
month, a new set of documents are added, and the SVD must be recomputed.
The number of documents added will vary from month to month. By default,
documents are assigned to processors in a cyclic fashion. There is a cost asso-
ciated with moving documents between processors. We seek load balance with
respect to the number of nonzeros in the term-by-document matrix, which
corresponds to memory usage.

We started with all the documents that existed on Jan. 1, 1994, and ran a ten
year simulation (120 months). The full matrix has about 700,000 documents
and 57 million nonzeros. In this application, α should be in the range 100−600;
we tested α = 100. Experiments were run on Sandia’s Odin cluster using 16,
32, and 64 processors; results are presented in Figures 17 and 18. We compare
only hypergraph-based approaches since graph-based methods (ParMETIS)
do not apply directly. We see from Figure 17 that the multilevel methods are
clearly performing better than the single-level methods, in terms of solution
quality. Since in this application, migration cost becomes very small compared
to application communication cost, there is only a little difference between
repartitioning and scratch-remap.

7 Conclusion

In this paper, we presented a new approach to dynamic load balancing based
on a single hypergraph model that incorporates both communication volume
in the application and data migration cost. Detailed comparison of graph-
and hypergraph-based repartitioning using datasets from a range of applica-
tion areas showed that hypergraph-based repartitioning produces partitions
with similar or lower cost than the graph-based repartitioning. The full ben-
efit of hypergraph partitioning is realized on non-symmetric and non-square
problems that cannot be represented easily with graph models [16,22].

Our hypergraph-based repartitioning model uses a single user-defined param-
eter α to control trade-off between communication cost and migration cost.
Experiments show that the approach works particularly well when migration
cost is more important, and does not degrade quality when communication
cost is more important. Therefore, we recommend the presented approach as
a universal method for dynamic load balancing. The best choice of α will de-
pend on the application, and can be estimated easily. Reasonable values are
in the range 1− 1000.
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The experiments showed that the hypergraph-based repartitioning approach
implemented in Zoltan is scalable. However, in many cases it required more
time than its graph-based counterpart due to the greater richness of the hy-
pergraph model. We will further investigate exploiting locality given by the
data distribution in order to improve the execution time of the hypergraph-
based repartitioning implementation. However, since the application run time
is often far greater than the partitioning time, this enhancement may not be
important in practice.
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[17] U. V. Çatalyürek and C. Aykanat. PaToH: A Multilevel Hypergraph
Partitioning Tool, Version 3.0. Bilkent University, Department of Computer
Engineering, Ankara, 06533 Turkey. PaToH is available at http://bmi.osu.
edu/∼umit/software.htm, 1999.

[18] N. Chrisochoides. Multithreaded model for dynamic load balancing parallel
adaptive PDE computations. ICASE Report 95-83, ICASE, NASA Langley
Research Center, Hampton, VA 23681-0001, Dec. 1995.

[19] G. Cybenko. Dynamic load balancing for distributed memory multiprocessors.
J. Parallel Distrib. Comput., 7:279–301, 1989.

27



[20] H. deCougny, K. Devine, J. Flaherty, R. Loy, C. Ozturan, and M. Shephard.
Load balancing for the parallel adaptive solution of partial differential
equations. Appl. Numer. Math., 16:157–182, 1994.

[21] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and R. A.
Harshman. Indexing by latent semantic analysis. J. of the American Society
for Information Science, 41(6):391–407, 1990.

[22] K. Devine, E. Boman, R. Heaphy, R. Bisseling, and U. Catalyurek. Parallel
hypergraph partitioning for scientific computing. In Proc. of 20th International
Parallel and Distributed Processing Symposium (IPDPS’06). IEEE, 2006.

[23] K. Devine and J. Flaherty. Parallel adaptive hp-refinement techniques for
conservation laws. Appl. Numer. Math., 20:367–386, 1996.

[24] P. Diniz, S. Plimpton, B. Hendrickson, and R. Leland. Parallel algorithms for
dynamically partitioning unstructured grids. In Proc. 7th SIAM Conf. Parallel
Processing for Scientific Computing, pages 615–620. SIAM, 1995.

[25] J. Faik, L. G. Gervasio, J. E. Flaherty, J. Chang, J. D. Teresco, E. G. Boman,
and K. D. Devine. A model for resource-aware load balancing on heterogeneous
clusters. Technical Report CS-03-03, Williams College Dept. Computer Science,
2003. http://www.cs.williams.edu/drum/.

[26] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving
network partitions. In Proc. 19th IEEE Design Automation Conf., pages 175–
181, 1982.

[27] J. Flaherty, R. Loy, M. Shephard, B. Szymanski, J. Teresco, and L. Ziantz.
Adaptive local refinement with octree load-balancing for the parallel solution
of three-dimensional conservation laws. J. Parallel Distrib. Comput., 47(2):139–
152, 1998.

[28] M. R. Garey and D. S. Johnson. Computers and Intractability. W.H. Freeman
and Co., New York, New York, 1979.

[29] B. Hendrickson and T. G. Kolda. Graph partitioning models for parallel
computing. Parallel Computing, 26:1519 – 1534, 2000.

[30] B. Hendrickson and R. Leland. The Chaco user’s guide, version 2.0. Sandia
National Laboratories, Alburquerque, NM, 87185, 1995.

[31] B. Hendrickson and R. Leland. A multilevel algorithm for partitioning graphs.
In Proc. Supercomputing ’95. ACM, December 1995.

[32] B. Hendrickson, R. Leland, and R. Van Driessche. Skewed graph partitioning.
In Proc. Eighth SIAM Conf. Parallel Processing for Scientific Computation,
March 1997.

[33] Y. F. Hu and R. J. Blake. An optimal dynamic load balancing algorithm.
Technical Report DL-P-95-011, Daresbury Laboratory, Warrington, UK, 1995.

28



[34] Y. F. Hu, R. J. Blake, and D. R. Emerson. An optimal migration algorithm for
dynamic load balancing. Concurrency: Practice and Experience, 10:467 – 483,
1998.

[35] M. A. Iqbal and S. H. Bokhari. Efficient algorithms for a class of partitioning
problems. IEEE Trans. Parallel Distrib. Syst., 6(2):170–175, 1995.

[36] G. Karypis and V. Kumar. MeTiS A Software Package for Partitioning
Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing
Orderings of Sparse Matrices Version 4.0. University of Minnesota, Department
of Comp. Sci. and Eng., Army HPC Research Center, Minneapolis, 1998.

[37] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for
partitioning irregular graphs. SIAM Journal on Scientific Computing, 20(1),
1999.

[38] G. Karypis, V. Kumar, R. Aggarwal, and S. Shekhar. hMeTiS A Hypergraph
Partitioning Package Version 1.0.1. University of Minnesota, Department of
Comp. Sci. and Eng., Army HPC Research Center, Minneapolis, 1998.

[39] G. Karypis, K. Schloegel, and V. Kumar. Parmetis: Parallel graph partitioning
and sparse matrix ordering library, version 3.1. Technical report, Dept.
Computer Science, University of Minnesota, 2003. http://www-users.cs.umn.
edu/∼karypis/metis/parmetis/download.html.

[40] H. Kasahara and S. Narita. Practical multiprocessor scheduling algorithms for
efficient parallel processing. IEEE Transactions on Computers, C-33(11):1023–
1029, Nov 1984.

[41] T. Lengauer. Combinatorial Algorithms for Integrated Circuit Layout. Willey–
Teubner, Chichester, U.K., 1990.

[42] L. Oliker and R. Biswas. PLUM: Parallel load balancing for adaptive
unstructured mesh es. J. Parallel Distrib. Comput., 51(2):150–177, 1998.

[43] C.-W. Ou and S. Ranka. Parallel incremental graph partitioning using linear
programming. Technical report, Syracuse University, Syracuse, NY, 1992.

[44] A. Patra and J. T. Oden. Problem decomposition for adaptive hp finite element
methods. J. Computing Systems in Engg., 6(2), 1995.

[45] J. R. Pilkington and S. B. Baden. Partitioning with spacefilling curves.
CSE Technical Report CS94–349, Dept. Computer Science and Engineering,
University of California, San Diego, CA, 1994.

[46] P. Sadayappan and F. Ercal. Nearest-neigbour mapping of finite element graphs
onto processor meshes. IEEE Transactions on Computers, 36(12):1408–1424,
1987.

[47] P. Sadayappan, F.Ercal, and J. Ramanujam. Cluster partitioning aproaches to
mapping parallel programs onto hypercube. Parallel Computing, 13:1–16, 1990.

29



[48] K. Schloegel, G. Karypis, and V. Kumar. Multilevel diffusion algorithms for
repartitioning of adaptive meshes. J. Parallel Distrib. Comput., 47(2):109–124,
1997.

[49] K. Schloegel, G. Karypis, and V. Kumar. Multilevel diffusion algorithms for
repartitioning of adaptive meshes. J. Parallel Distrib. Comput., 47(2):109–124,
1997. Also available on WWW at URL http://www.cs.umn.edu/˜karypis.

[50] K. Schloegel, G. Karypis, and V. Kumar. A unified algorithm for load-balancing
adaptive scientific simulations. In Proc. Supercomputing, Dallas, 2000.

[51] K. Schloegel, G. Karypis, and V. Kumar. Wavefront diffusion and LMSR:
Algorithms for dynamic repartitioning of adaptive meshes. IEEE Trans. Parallel
Distrib. Syst., 12(5):451–466, 2001.

[52] S. Sinha and M. Parashar. Adaptive system partitioning of AMR applications
on heterogeneous clusters. Cluster Computing, 5(4):343–352, October 2002.

[53] J. D. Teresco, M. W. Beall, J. E. Flaherty, and M. S. Shephard. A hierarchical
partition model for adaptive finite element computation. Comput. Methods
Appl. Mech. Engrg., 184:269–285, 2000.

[54] A. Trifunovic and W. J. Knottenbelt. Parkway 2.0: A parallel multilevel
hypergraph partitioning tool. In Proc. 19th International Symposium on
Computer and Information Sciences (ISCIS 2004), volume 3280 of LNCS, pages
789–800. Springer, 2004.

[55] R. Van Driessche and D. Roose. Dynamic load balancing with a spectral
bisection algorithm for the constrained graph partitioning problem. In High-
Performance Computing and Networking, number 919 in Lecture Notes in
Computer Science, pages 392–397. Springer, 1995. Proc. Int’l Conf. and
Exhibition, Milan, Italy, May 1995.

[56] C. Walshaw. The Parallel JOSTLE Library User’s Guide, Version 3.0.
University of Greenwich, London, UK, 2002.

[57] C. Walshaw and M. Cross. Multilevel mesh partitioning for heterogeneous
communication networks. Future Generation Computer Systems, 17:601–623,
2001.

[58] C. Walshaw, M. Cross, and M. Everett. Parallel dynamic graph-partitioning
for adaptive unstructured meshes. J. Par. Dist. Comput., 47(2):102–108, 1997.

[59] C. Walshaw, M. Cross, and M. G. Everett. Parallel dynamic graph partitioning
for adaptive unstructured meshes. J. Parallel Distrib. Comput., 47(2):102–108,
1997.

[60] M. S. Warren and J. K. Salmon. A parallel hashed oct-tree n-body algorithm.
In Proc. Supercomputing ’93, Portland, OR, Nov. 1993.

[61] M. Willebeek-LeMair and A. P. Reeves. Strategies for dynamic load balancing
on highly parallel computers. IEEE Trans. Parallel Distrib. Syst., 4(9):979–993,
1993.

30



[62] R. Williams. Performance of dynamic load balancing algorithms for
unstructured mesh calculations. Concurrency, 3:457–481, October 1991.

[63] Zoltan: Data management services for parallel applications. http://www.cs.
sandia.gov/Zoltan/.

31


